
2. In analyzing the efficiency or the overall working capacity of MHD converters with 
a localized discharge, for the worst (in the mechanical sense) variant the model 
corresponding to isentropic flow past the discharge with negligibly small thermal 
wake (A~/A0 § I) can be studied. In this case it is assumed that the size of the 
discharge is comparable to the transverse size of the channel. The best variant is 
the plasma-piston model. In the case of a polyatomic molecular gas (in particular, 
C02) for IBh/A0p= ~ 10-15 both models are virtually identical. 

3. The comparison of the experimental and computed values of the velocities of the dis- 
charge in the "railtron" made above shows that the experimental points fall into the 
indicated interval, approaching one or another limiting case depending on the condi- 

tions and type of gas. 

We thank V. S~ Sokolov, O. G. Parfenov, V. S. Slavin, and A. D. Lebedev for useful dis- 

cussions and remarks in the course of this work. 
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DYNAMICS OF LIQUID FILMS. PLANE FILMS WITH FREE RIMS 

V. M. Entov, A. N. Rozhkov, 
U. F. Feizkhanov, and Ao L. Yarin 

UDC 532.522+532.62+532.135 

The discharge of a liquid from thin slits of finite length ("slit nozzles or dies") re- 
sults in the formation of characteristic V-shaped plane streams (free dynamic films) which 
are bounded by free "rims" -- boundary streams [I] (Fig. la). A similar flow is realized in 
purer form if a small section is cut out from the dynamic film created, for example, in the 
flow of a stream against a barrier. Here, the section is isolated by placing two thin blades 
or wires in the path of the liquid [2]. It is clear that the form of the film and the veloc- 
ity field in it contain information on the stress field, and quantitative analysis of such 
flows may be a means of studying the rheology of the liquid. Along with this, it is important 
to analyze flow in films and in the free rims at their edges to understand the conditions of 
fragmentation and atomization of the liquid. Presented below are results of theoretical and 
experimental studies of free films with boundary streams for ideal and viscoelastic liquids. 

I. Formulation of the Problem. Taking advantage of the thinness of the film and bound- 
ary stream, we can describe the flow as a combination of two-dimensional equations in the 
region G occupied by the film and one-dimensional "stream" equations on the axis S of the 
boundary stream. The boundary stream is distinguished from the rest of the liquid by the 
fact that mass and momentum exchange occur on the lateral surface of the stream. The motion 
of liquid in the film and rim is conveniently described in polar coordinates (r, @) in the 
middle plane of the film. We will examine small segments ABB'A' of a free rim on the edge 
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Fig. i 

of a stationary plane film G (Fig. 2), here assuming that flow in the free rim is quasi- 
unidimensional. This is equivalent to assuming that liquid entering the rim from the film 
G through the boundary A'B' is instantaneously mixed with the liquid moving inside the rim. 
In the isolated segment of the rim, a mass of liquid equal to the following moves into areas 
AA' and A'B' during the time dt 

P (Vd)laA' dt + p (Vr sin ~ + Vo eos ~lh  la, r d~ at, 

and moves out of the area BB' -- o(V~f) IBB'dt. Here, P is the density of the liquid; f is the 
cross-sectional area of the free rim; V~ is the velocity of the liquid along the rim axis S, 
along which the coordinate ~ is reckoned; V r and V 0 are the radial and azimuthal components 
of velocity in the film over the area A'B'; h is the thickness of the film; ~ is the angle 
between the direction of the radius and the tangent ~i to the axis S. Figuring the mass 
balance for the rim section A~B'A', we obtain the following continuity equation for the free 
rim: 

Examination of the momentum balance inside the rib with the assumption that here the liquid 
is instantaneously unloaded from internal stresses leads to the equation 

pd(V~]gx)/c~ = pVh (Vr sin ~ + Vo cos ~) § ~nh + 2=nx, (1.2)  

where nl is a normal to S in the plane of the film; ~n is the stress in the film on the area 
A'B'; ~ is the surface tension of the liquid. 

Projecting (1.2) onto the tangent and the normal to S, we have 

P ~ t  = ph (V~ sin ~ + Vo cos ~) (V~ cos ~ - -  Fo sin ~) + .h [sin ~ cos ~ ( ~ o o "  at.) - -  a~e cos 2~], 
- ~ ( i  . 3 )  

pV{[ \'d"((d~ " "~ ~ = -- 9h (Vr sin ~ § Ve cos ~)~ + 

+ h ( ~  sin ~ ~ + ~oe cos ~ ~ + a~o sin 2~) + 2~. 

We will use Orr, oeS, Ore to denote components of the stress tensor in the film on the bound- 
ary A'B' with the free rim. 

The above equations are valid only up to the beginning of the breakaway of a drop from 
the rim, leading to its destruction. This does not diminish their significance, since experi- 
ments show that the free rim remains intact over fairly long sections even in the case of wa- 
ter films. 
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The following geometric relations are added to Eqs. (1.1) and (I.3): 

dO = '1 t g ~ ,  d~s inr  ( 1 . 4 )  
dr r 

One of the solutions of system (1.1), (1.3), and (1.4), represented in the form r = R(e), 
gives the equation of the rim axis S. 

In the present case of a stationary film with a plane middle surface and variable thick- 
ness, we write the general equations of motion of the liquid in the film [3, 4] in the form 

+ (Voh) = O, 

Or O(:rroh av~ ov~ pV~h = + - -  (rooh, ( 1 . 5 )  pV~rh ~ + pVoh --~ -- T "-Tff- 

OV O OV O O~rorh O(lool~ 
oVrrh ~ + pVoh - ~  + oVoVrh = Or t- -T6- + cr~oh. 

To find the stresses o in the film, it is necessary to use the governing rheological 
equations of the liquid. They will be used in a form corresponding to one of the variants of 
a viscoelastic Maxwell liquid [5]: 

V~ -~r + - 7  - 8 ~  = 2w= . ar r aO - -  --~ x/zz + " Or r o0 r '  ' 

O~r, V o (Ow~, 2w ~ OV~ OV~ Vo~ %~ 2~OV~ 
V ~ - f f F + r k " T f f - -  ~o] = 2 " r ~ - ~ / +  2wro ( t  oo 7 ] - - - ' ~ + ~ . T r ,  

)= _?) Vr'~-rq-r(- '~-+'rrr--WO~ "rrr"~'r +"r176176 "-7 O0 ( 1 . 6 )  

+W~-okr 0o+-7+-~//--~+~_ -~4 or v~ 
V r ~ O - i - V o (  .'O0 2TrO) r ~ 19'70 ( !  .~_00 .[ Vr '~ "6"00 2~ iOVo 

O'rr ~ ~rr -- ~zz~ 0"00 ~--- TOO - -  Tzz~ fifo ~ TrO, 

where Tzz, ~rr, Tee, and ~re are the deviator stresses in the film; ~ and % are the viscosity 
and relaxation time of the liquid. Similar rheological relations are obtained from molecular- 
hydrodynamic models [6] if the cumulative elastic strains are not too great. 

Thepresence of free rims may have an effect on flow inside the film. Thus, the equa- 
tions of film dynamics (1.5)-(1.6) should be solved simultaneously with the equations of the 
rim in region G with unknown boundary S corresponding to free rims. These equations are 
solved with suitable conditions on the discharge line and S. Below we examine a simplified 
variant of this problem, assuming that the rib does not have an inverse effect On flow in the 
film. In this case, flow in the film can in principle be examined independently, and we are 
concerned only with finding the unknown position of the rims. This physically formulated 
assumption rests on two facts. First, the liquid always flows from the film to the rim (the 
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reverse situation is not seen). Second and most important, here we are examining only fairly 
rapid flows (or liquids with sufficiently low viscosity) in which perturbations are propa- 
gated mostly along the flow. Propagation of perturbations across the flow is limited to the 
narrow boundary layers. The character of these layers is similar to that examined in [7] in 
an analysis of the formulation of boundary conditions on the far end of a free film. 

The velocity component in the film which is tangent to the free rim V~I = V r cos ~ -- 
V 0 sin ~ differs from the liquid velocity in it V~. Thus, a mixing layer should develop on 
the boundary between the free rim and film A'B', this layer intensifying the equalization of 
velocities in the free rim. 

2. Free Rims with Radial Flow in a Film. We assume that flow in the film is purely 
radial. Meanwhile, it follows from the continuity condition that 

V r = C/[rh(r~], V0 = 0, C = const' 
E x p e r i m e n t s  show t h a t  t he  c h a r a c t e r  o f  f l o w  i n  t h e  f i l m  i s  u s u a l l y  r a d i a l  n o t  o n l y  when 

t h e  f i l m  i s  f o r m e d  on an a x i s y m m e t r i c  o b s t a c l e  [ 7 ] ,  b u t  a l s o  in  t h e  c a s e  o f  d i s c h a r g e  o f  a 
f i l m  f r o m  a s l i t  n o z z l e .  

Then,  w i t h  a l l o w a n c e  f o r  ( ] . 4 ) ,  we o b t a i n  t h e  f o l l o w i n g  f r o m  t h e  c o n t i n u i t y  e q u a t i o n  f o r  
the rim (1.1) 

~ I  = Q,. ~- C~0 ~ 0), (2 .  ]) 

where  Qz i s  t h e  f l o w  r a t e  i n  t h e  i n i t i a l  s e c t i o n  o f  t h e  r i b  c o r r e s p o n d i n g  to  t h e  a n g l e  00. 

U s i n g  Eq. ( 2 . 1 ) ,  we can  s i m p l i f y  Eqs .  ( 1 . 3 )  and ( ] . 4 )  and change  them to  d i m e n s i o n l e s s  
f o r m  

dF~d_~=q!+Oo_Ot { . [Vr 1 ] Vgtg*} s l n ~  T + ~7~r (a00 - -  a,r) 7 ' 
( 2 . 2 )  

] t [ Vr sin2 * 1 . ,  t . . . . . .  (Grr sin 2 ~ ~- o00 cos 2 ~) dO t g ,  
d_~dr - - ~ *  -[- V~(ql "r---~0~-~ + we cos* + VrrCOSV ' dr r 

The c o r r e s p o n d i n g  e q u a t i o n s  f o r  f l o w  in  t h e  f i l m  t a k e  t h e  f o r m  

dr----Z" = [ t  - -  u  ~ (~,, -+- 4K -4- 3~=)] • [V7 2 ( - -  K Re T~ + 2T=V,/r + K He T= -+- 2KVJr) --  (Too --  ~=)/(rV,)], 
dr 

d,zz t [ [dVr V_~) [dVr "Vr\] 
dr V~ [ - -  2~=/-'~-r + - -  K Re ~= - -  2K (-~-r + -7")J' 

d~,, t [ dV, K dr , ]  
dr ~ V-'~ ~2Trr'=~-r - ReTrr  + 2K dr J' (2.3) 

dT00 t[2T00Vr ~ ]  
dr Vr[: 7 K He~oo + 2K , 

f f r r  = T r r - -  T z z ,  frO0 = T O 0 - -  Tzz~ 

" Q1 ph~ ~ %V~ q l = - -  
We ~ , ,  K = p - - ~ ,  Re ~ , roVoho. 

I n  Eqs .  ( 2 . 2 )  and ( 2 . 3 ) ,  t h e  v e l o c i t i e s  a r e  r e f e r r e d  to  V0, t h e  r a d i u s  i s  r e f e r r e d  to  r 0 ,  
and t h e  s t r e s s e s  a r e  r e f e r r e d  to  oVa. 

E q u a t i o n s  s i m i l a r  t o  ( 2 . 3 )  were  w r i t t e n  in  [2] ( s e e  [1] a l s o )  f o r  an i d e a l  l i q u i d ,  when 
V r ~ 1, Or r  = 000 ~ 0 .  Meanwhi le ,  t h e  i n i t i a l  f l o w  r a t e  in  t h e  r i b  ql  was assumed t o  be  z e r o ;  
t h e  s o l u t i o n s  o f  t h e s e  e q u a t i o n s  were  e v i d e n t l y  n o t  s t u d i e d .  

By i n t e g r a t i n g  Eqs .  ( 2 . 3 )  w i t h  i n i t i a l  c o n d i t i o n s  w r i t t e n  in  t h e  i n i t i a l  s e c t i o n  o f  t h e  
f i l m  r = 1, we can  f i n d  a l l  o f  t he  f l o w  p a r a m e t e r s  in  t h e  f i l m  t h a t  a r e  n e e d e d  t o  f i n d  t h e  
r i m  a x i s  S. The f o r m  o f  t h i s  a x i s  and t h e  f l o w  p a r a m e t e r s  i n  t h e  r im  a r e  t h e n  d e t e r m i n e d  
f r o m  Eqs .  ( 2 . 2 ) .  

The q u e s t i o n  o f  f o r m u l a t i n g  t h e  i n i t i a l  c o n d i t i o n s  f o r  t h e s e  e q u a t i o n s  i s  i m p o r t a n t .  
The re  a r e  two f u n d a m e n t a l l y  d i f f e r e n t  c a s e s :  From t h e  b e g i n n i n g  we have  had a p r o b l e m  c o n -  
c e r n i n g  a b o u n d a r y  s t r e a m  w i t h  a n o n t r i v i a l  f l o w  r a t e  q l ;  t h e  s econd  c a s e  i n v o l v e s  a b o u n d a r y  
s t r e a m  which  f o r m s  a t  t h e  s i t e  o f  d i s c o n t i n u i t y  o f  f i l m  (q l  = 0 ) .  The f i r s t  s i t u a t i o n  i s  
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clearly realized in the discharge of a stream from a slit die with a dumbbell-shaped cross 
section or in the event of discontinuity of the film caused by a wide obstacle. The second 

situation is realized in the event of discontinuity of the film as a result of the presence 

of a very fine wire. In fact, in the flow of a film against an obstacle of width d, we have 
the obvious estimate for the flow rate in the initial section of the free rim (I/2)V,h,d (the 

asterisks denote values at the location of the obstacle): Accordingly, ql = d/(2rl), and for 

an obstacle of sufficiently small size ql § 0. 

In the first case, it is necessary to assign the values of ql, ~0, and V~0 in the initial 
section of the boundary stream, while in the second case it is necessary to assign the initial 
point r = rl, e = 0o -- particularly for Eqs. (2.2). It can be shown that ~ and V~ in (2.2) 
take finite values for r = rl, ql = 0 only with satisfaction of the conditions 

r= r l ,  V~=V~o, ~=~o, 0=0o, 

V~o= v~+ v~ ]cosr (2.4) 

) ~00 Vr ~ ~00 - -  grr sin2~o= ~ + ~  

(the ambiguity of the solution of the equation for the angle reflects the fact that two 
streams are formed when the flow is disrupted by an obstacle). Accordingly, dV~/dr and d~/dr 

also take finite values at r = rl. 

The value of the radius r = r2 at which 

Vi--rVr/We--~rr = 0 (2.5) 

corresponds to the creation of a free rim in the form of an arc (a condition analogous to 
(2.5) for an ideal liquid was obtained in [2]). The liquid in this rim is relieved of sur- 
face and elastic forces, while the separation of a drop from it leads to destruction of the 
film at r = r2. In a number of cases, free rims which develop on fine wires or on a nozzle 
edge cannot close the radius r = r 2, and the film turns out to be fairly long and bounded 
by three free rims. By analogy with gas dynamics, free rims which begin on obstacles or on a 
nozzle edge can be called "oblique discontinuities," while free rims in the form of arcs of a 
circle at r = r2 can be called "normal discontinuities." 

3. Experiment and Comparison of Its Results with the Theory. To check the adequacy 
of the theoretical scheme devised here, we performed calculations for films of an ideal liquid 
(water) and compared the results with an experiment. 

In the experiment, we used thin wires to isolate a thin sector from a film created by a 
slit die. The sector itself constituted a plane film delimited by boundary streams (see Fig. 
Ib). The velocity field V in the film was found by the method of tracing hydrogen bubbles in 
combination with photographs taken with stroboscopic illumination; the distribution of the 
unit volumetric flow rate in the film, equal to Vh, was found independently. This allowed 
us to find V and h separately and confirm the constancy of V and the radial character of the 
flow. 

The calculations involved integration of Eq. (2.2) with the corresponding initial con- 
ditions. Here, in the ideal liquid the stresses Orr and o80 were assumed to be zero, while 
the velocity V r ~ 1. 

Figure 3 shows the form of the rims which are created with different initial positions 
of the wires that cut the film (different rl). The points represent experimental results, 
while curves I show the calculated results; we assumed that ql = 0 and we used the initial 
conditions (2.4), since in this case an estimate of the initial flow rate in the boundary 
stream gives values ql ~ (3-6)'I0 -3. The Ox axis is the symmetry axis of the flow. 

In the present case, the angles made by the rib with the symmetry axis of the film are 
small; this makes it possible to simplify the equation of the rim additionally by representing 
it in the form 

( --1 y -  mo'd~y -1 ~(Y dyl)~ t (~O0~oZ.____._qo + 2~) (3.1) 
t -  oo ~*yoPh--o) a~ = Oo XVo 7~ a~ 7 pr~hoV ~ 

where x and y are Cartesian coordinates (x = rcos 8, y = r sin 8); m0 = fop is the mass of the 
liquid in the initial element of a rim of unit length at the point of formation of the free 
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rim~ h0 is the thickness of the film at this point; x0, Y0 (00 = y0/x0) are the coordinates 
of this point; V0 is the velocity of the liquid flow in the film, which coincides in the given 
formulation with the velocity of the liquid flow in the rim. 

Asymptotic equation (3.1) is valid under the conditions @0 ~ I, pV 2 ~ o@@, pV 2 ~ ~rr" 
It is convenient in the sense that it makes it possible to solve the inverse problem -- find 
the azimuthal stresses in the film a0e from the form of the rim. Equation (3.1) should be 
integrated with allowance for the second condition of (2.4). 

To evaluate the error introduced by changing over to asymptotic equation (3.1), we used 
it to calculate the form of films for the test conditions shown in Fig. 3 (line 2 represents 
the calculated results). It is evident that asymptotic equation (3.1) agrees satisfactorily 
with the experimental results for sufficiently small values of e0. In [I], an explicit ap- 
proximate expression for the form of the rim r = R(e) was obtained from (2.2) for small angles 
of inclination of free rims relative to the symmetry axis of films. 

In the next stage of the experiment, we studied films of dilute polymer solutions and 
attempted to determine the stresses in the liquid by means of Eq. (3.1). However, the re- 
suits obtained were not sufficiently accurate, so we subsequently used another method. 

Calculations were performed with the Maxwell model of a viscoelastic liquid and values 
of the parameters M = 10 -3 kg/(m, sec) and I ~ 10 -2 sec, which are typical for dilute polymer 
solutions. It was found that this model predicts that the form of the free rims is indepen- 
dent of the elastic properties of the dilute solution and that the stresses ae0 ~ I N/m 2. 

Let us examine the results obtained in the calculation of flows from slit nozzles on the 
basis of Eqs. (2.2) and (2.3). Figure 4 shows data for a viscoelastic liquid issuing from 
a slit nozzle in the case of developed boundary streams at the edge of the nozzle. Here, we 

took ql = 0.1, rz = 5, 40 = 0, e0 = 15 ~ , and V~0 = Vr(rl) (nozzle with dumbbell-shaped cross 
section). We used r0 as the length scale, and we assumed that at I < r ~ rl flow in the 
nozzle develops as a free film. Friction losses on the wall are negligible. At I ~ r ~ rl, 
Eqs. (2.3) are integrated with the initial conditions r = I, Vr = I, and Tzz = Trr = TOe = 0. 
At r > rl, Eqs. (2.3) are integrated together with Eqs. (2.2). The solid lines I-5 in Fig. 4 
correspond to We = 0.36-I0 s, Re = 6, K = 0.278.10-4; We = 0.64-I0 s, Re = 8, K = 0.156-10-4; 
We = 105 , Re = 10, K = 10-5; We = 1.44-105 , Re = 12, K = 0.69-10-5; We = 1.96"105 , Re = 14, 
K = 0.51-10 -5 (the initial velocity of the liquid increases while the other parameters remain 
fixed). For example, the parameter values for curve 3 in Fig. 4 correspond to a monotonic 
increase in the stress o0e along the film until it joins the free rims -- the lifetime of a 
liquid particle in the film is too short for any appreciable relaxation of the azimuthal 
stresses. 

The parameter values adopted here pertain to a region in which the elastic forces are 
intentionally more important than the surface forces. Thus, the form of the film is completely 
determined by the elastic modulus of the liquid. A decrease in the latter �9 is accompanied by a 
decrease in the elastic forces, which leads to greater divergence of the free rims. The rims 
converge more rapidly with an increase in the modulus. The dashed curves I and 5 in Fig. 4 
show results for an elastic modulus which has been reduced by a factor of 1.5 (with a corre- 
sponding reduction in K); the rest of the dimensionless criteria have the same values as be- 
fore. 
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With a decrease in the initial flow rate ql, the boundary stream formed in the case of 
discharge from a slit nozzle with a dumbbell shape becomes more and more like the boundary 
stream formed on the edge of a nozzle in the form of a highly prolate ellipse, when ql = 0 

and initial conditions (2.4) are valid. 

Finally, let us examine data pertaining to fairly long films bounded by three free rims. 
Figure 5 shows in dimensionless form the results of calculation of discharge from a slit 
nozzle with a dumbbell-shaped edge (We = 103 , Re = 0.28"103 , K = 10 -4 , ql = 0.1, rl = 5, 
90 = 60~ Curve I is for one of two free rims beginning on the nozzle edge ("oblique dis- 
continuity), curve 2 is for a free rim with an axis in the form of a circle arc ("normal dis- 
continuity"), and curve 3 is the distribution of the azimuthal stress ~O0 along the film. 
The maximum of this stress and the subsequent sharp reduction are due to relaxation. For 
the parameter values corresponding to Fig. 4, the film becomes longer and a third rim de- 
velops behind it as a result of an increase in the divergence angle 00. 

It can be suggested that the appearance of a third free "unloading rim" in the formal 
solution before joining of the boundary streams corresponds physically to breakdown of the 

film. 
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NONSYMMETRIC COLLISION OF PLANE JETS OF AN IDEAL INCOMPRESSIBLE FLUID 

S. A. Kinelovskii and A. V. Sokolov UDC 532.522.2 

The problem of the nonsymmetric collision of plane jets of an ideal incompressible liquid 
has been regarded for several decades as not having an unambiguous solution (see [I-3], for 
example). The reason for the ambiguity is the mathematical indeterminacy of the problem, al- 
though it could be expected that with given values of the width of the colliding streams and 
the angle of impact, the configuration of the flow should be unambiguously determined. The 
interest in this problem stems from the fact that it is widely used to describe (in a first 
approximation) the high-speed oblique collision of metal plates. 

Figure I shows the flow pattern in the collision of plane free jets having the same den- 
sity p = I and velocity v = I (at an infinitely distant point and on the free boundaries)~ 
Here, al and a3 are the widths of the colliding jets (at the infinitely distant point), G3 is 
the angle of impact, a2 and a~ are the widths of the outgoing jets, and e2 and ~4 are the 
angles of their inclination to the x axis (for simplicity, the angle e4 has been reduced by 
~). Three equations follow from the conditions of mass conservation for the flow and projec- 
tions of the momentum flow. With allowance for the adopted notation, these equations take 
the form 

al  + a3 = a2 ~ a4, al  ~ a3cosO~ = 

= a 2 c o s  0 2 - - - a 4 c o s  0 4, a a s i n  O~ = a 2 s i n  0 2 - - a a s i n  04. (1 )  
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